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T
he effect of the chemical environ-
ment on the architecture of single-
layer graphene (SLG) or its oxide

derivative (SLGO) is important when consid-
ering its possible applications as a polymer
strengthening agent,1 in heterogeneous
catalysis,2 manipulation of electrical con-
ductivity,3 drug delivery,4 or wastewater
cleanup.5 The ability of graphene sheets to
change their morphology under the influ-
ence of chemical factors is also an example
of converting chemical energy into me-
chanical energy, which may have interest-
ing applications. A variety of graphene
structures have been observed from folding
to bending to scrolling,6�9 yet the influence
of chemical environment over the final
morphology of SLGO is poorly understood.
Quantum chemical and molecular dy-

namic simulations of SLG have revealed
that individual sheets, ribbons, and scrolls
can spontaneously change conformation.10

However, these simulations did not account
for the extensive oxygen functionality that
is systemic for SLGO produced from chemi-
cally expanded and exfoliated graphite. The
stability of aqueous SLGO suspensions is
determined by several factors such as the
hydration of the oxygen-containing groups,
the negative surface charge (due to the
reaction:�COOH(s)f�COO�(s)þ Hþ(aq))
causing intersheet repulsion,11 and the hy-
dration of hydrophobic fragments. In con-
tact with cations, the negative charge can
be overcome causing precipitation of SLGO
from its suspension, known as salting out.
Molecular dynamics simulations have

been performed for graphene oxide
sheets in order to study their aggregation at

differentpHvalues; thesurfaceenergyofSLGO
was calculated from the charging of oxygen-
containing functional groups decorating the
periphery and the surface of graphene. The
model used was deliberately functionalized
with a low degree of carboxylic, hydroxyl,
and epoxy groups randomly attached to the
SLGO sheets, but the small sheet area was
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ABSTRACT

The extensive oxygen-group functionality of single-layer graphene oxide proffers useful anchor sites

for chemical functionalization in the controlled formation of graphene architecture and composites.

However, the physicochemical environment of graphene oxide and its single-atom thickness facilitate

its ability to undergo conformational changes due to responses to its environment, whether pH,

salinity, or temperature. Here, we report experimental and molecular simulations confirming the

conformational changes of single-layer graphene oxide sheets from the wet or dry state. MD, PM6,

and ab initio simulations of dry SLG and dry and wetted SLGO and electron microscopy imaging show

marked differences in the properties of the materials that can explain variations in previously

observed results for the pH dependent behavior of SLGO and electrical conductivity of chemically

modified graphene-polymer composites. Understanding the physicochemical responses of graphene

and graphene oxide architecture and performing selected chemistry will ultimately facilitate greater

tunability of their performance.
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insufficient to generate conformational changes.12 Here,
weuse a combinationof experimental data andmolecular
simulations to reveal the chemically drivenmechanism of
morphology changes of SLG and SLGO functionalized
withoxygen-containinggroups in response to its chemical
environment.

RESULTS AND DISCUSSION

The stability of aqueous SLGO suspensions at various
pH was examined following their purification with an
alkali solution to remove oxidative debris (Supporting
Information). The increase in pH of the chemical en-
vironment leads to deprotonation of acidic functional
groups as in the reaction: �COOH(s) þ OH�(aq) f
�COO�(s)þ H2O and the zeta potential of SLGO drops
from �20 mV to �45 mV with pH increasing from 2
to 11, respectively (Figure S1 in the Supporting
Information). This corresponds to the negative surface
charge density uncompensated by counterions in the
shear layer (a compacted part plus a part of the diffuse
layer of the electrical double layer, EDL). As expected,
the aqueous SLGO suspension becomes unstable
when the zeta potential increases above �30 mV at
around pH 3, due to reduced electrostatic repulsion,
which can be observed by the instant precipitation of
SLGO (Figure S1 insert).
It was found that the conformation of SLGO can be

significantly affected by pH; at low pH SLGO exists
predominantly as flat sheets with a high degree of
agglomeration between the sheets, but at higher pH
(>7) the SLGO sheets begin to collapse (Figure 1a�c).13

The conformational changesmay explain the presence
of a small hysteresis loop detected in potentiometric
titrations (Figure 1d), which weakly depends on the
ionic strength of the solution in the range from 0.005 to
0.5 M KCl. It has also been found that the drying of
SLGO from solvents (particularly water) exerts surface
tension effects on the graphitic domains; this behavior
is similar to carbon nanotube systems under drying,14

which may exacerbate folding effects. However, the
type of intrasheet collapse that occurs at high pH
(>7, Figure 1c) was not observed at low pH (<7,
Figure 1a), which justifies the inferred pH-dependence
mechanism.
Three types of calculations (ab initio, PM6, and

MD/CharMM) applied here to different SLGO and SLG
models (from 220 to 13000 atoms) were utilized
to examine effects of oxygen functionality on the
graphene geometry changes. The PM6/MOZIME15 cal-
culations of unfolded and folded SLGO sheets, with
randomly distributed O-containing functionalities,
show that the formation of strongly bent SLGO struc-
tures (Figure 2c,e) is more favorable than flat sheets
(Figure 2a). In these calculations the ratio between
carboxylic, lactone, and phenolic functional groups
matched the acid�base (Boehm) titration analysis data

with a total of ∼6 atom % of O atoms in the sheet.16

A large rectangular ∼21 nm by ∼8 nm sheet has been
used for both SLG and SLGO calculations (Figure 2).
CharMM force field calculations of this sheet and two-
or 4-fold smaller sheets (ca. 5�10 nm), hydrated and
nonhydrated, revealed a stronger tendency for unfold-
ing for smaller structures. The ab initio (HF/6-31G(d,p))
calculations of small SLGOmodels (Figure 3) show only
little bending of an oxidized part of the sheet, but a
nonoxidized part is practically planar. Herein, a number
of in-plane lattice vacancies (Figure 2a) were intro-
duced to the SLGO structure and terminated with
oxygen-containing groups in order to reflect the
sheet-etching process of the basal planes during the
acid oxidation process.17 The difference between the
total energy of bent and planar SLGO structures (e) and
(a),ΔEt = Et,e� Et,a =�1021 kJ/mol (PM6). The strongly
bent SLGO structure (Figure 2c), which was first calcu-
lated with the CharMM force field and then optimized
by PM6/MOZYME to reach small energy gradient va-
lues corresponding to a local minimum at the potential
energy surface, has a higher energy than less tightly
folded (Figure 2e) and planar (Figure 2a) structures (Et,c
� Et,a = 1250 kJ/mol). However, for the SLG model the
difference between the total energy of a bent structure
(Figure 2f) and a flat sheet (Figure 2b) is positive ΔEt =
2017 kJ/mol, which indicates that the planar SLGO
structure (Figure 2a) is less stable than bent SLGO
(Figure 2e), and SLG is more stable in a flat conforma-
tion (Figure 2b). The radius of curvature is larger for
bent SLG (Figures 2d,f) than that for SLGO (Figures 2c,e)
because of the intrasheet defects in the latter. How-
ever, the spacing between neighboring fragments in
the bent SLG is smaller (Figure 2d) (0.39 nm, close to
that in graphite stacks, 0.34�0.38 nm) than in SLGO
(0.42 nm) due to the presence of O-containing func-
tionalities which increase roughness of the defect-
laden SLGO sheets in comparison with flat defect-free
SLG sheets. Somewhat counterintuitively, this gap
between fragments does not disappear during the
unfolding of bent SLGO and SLG since one surface
“slides” along the second surface. The spacing value in
the bent SLGOmodel corresponds to the spacing peak
calculated from the XRD data for SLGO dried from
suspension at pH 1 (causing a low surface charge
density) or a shoulder in the distribution function for
SLGO dried from suspension at pH 14 (with maximum
surface charging) (Supporting Information, Figure S4).
The conformational changes of a graphene sheet

can be conveniently visualized using the field point
method.18 Although all interactions in a molecule are
electrostatic in their origin, the whole electrostatic field
surrounding the molecule can be broken down into
four types of interactions, or fields, which correspond
to (i) predominantly hydrophobic interactions, (ii) van
der Waals attraction forces, or electrostatic fields domi-
nated by (iii) electropositive or (iv) electronegative
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Figure 1. TEM images of SLGO at pH (a) 5, (b) 7, and (c) 9, in 10 mM buffered solutions; (d) pH-dependent protonation and
deprotonation of acidic functionalities on SLGOmeasured by cyclic titration in the direction of increasing (up) and decreasing
(down) pH at different ionic strengths.

Figure 2. Model sheets (20.9� 7.9 nm2) of SLGO (a, c, e) (∼6 atom%O including in plane lattice vacancies (visible holes in the
sheet) with O-containing functionalities and saturated, oxidized peripheral C atoms) and SLG (b, d, f) with the geometry
calculated with the PM6/MOZYME method: (a, b) unfolded bands; (c, d) maximum folded structures corresponding to local
minima on the potential energy surface (PES); (e) optimized SLGO structure (global minimum on PES); and (f) folded SLG
structure (local minimum on PES, global minimum corresponds to the flat structure b).
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atoms or ions. In this visualization approach each atom
or a group of atoms is considered as a “field point” of
one of these four types, and together field points for a
continuous field. For example, in a hydrophobic phenyl
group the field point is at the center of the benzene
ring. This approach has proved to be useful in analysis
of crystal structures and drug discovery applications.19

There may be several possible mechanisms operat-
ing. First, each sheet has an uneven distribution of
functional groups, which clustered around defect sites,
particularly occupying lattice vacancies as terminating
groups in addition to O-containing functionalities at
the edges of the sheets. This still leaves certain un-
functionalized areas of “pure” graphene that also serve
as sites for π�π bond interactions (PM6/MOZYME),
which correspond to the van der Waals (vdW) and
hydrophobic fields around nonpolar fragments of the
carbon sheets,20 modeled in the FieldView studies.
These sections of the SLGO sheet exhibit hydrophobic
character (Figure 3a). Hydrophilic (positive and negative)

fields are mainly located around O-containing func-
tionalities and are much stronger at charged groups,
for example, �COO� (Figure 3c,d). The hydrophilic
field has a longer range (∼r�2 for charged groups)
than vdW and hydrophobic fields (∼r�6) around un-
functionalized nonpolar areas. All conformation
changes of SLGO in the aqueous environment are
pH-dependent because of changes in the surface
charge density around O-functionalities. These changes
should lead to a reduction of the open area of the
nonpolar fragments of folded sheets or sheet aggregates
exposed to water.
The shapes of graphene sheet aggregates

(envelope, star, rodlike, etc.)13 observed in TEM images
(Figure 1) depend on the pH at which the suspension
was dried, given that conformational changes start in
the aqueous medium and are enhanced during drying
because of decreasing charging and electrostatic re-
pulsive interactions that prevent aggregation of the
sheets in the suspension. It has been calculated that
bending occurs along lines with a maximal number of
defects in the sheets (Figure 3b), which also results in a
change of the distribution of different fields around the
sheet, with contributions of both positive and negative
hydrophilic fields increasing upon surface charging.
The negative field in the inner space of the bent sheet,
especially of a negatively charged sheet (Figure 3d),
suggests that positively charged ions can be captured
within bent SLGO structures.13 Furthermore, ab initio

HF/6-31G(d,p)21 calculations reveal that the presence
of lattice vacancies and the termination of the defect
sites with O-containing groups also disrupt the planar
geometry of graphene (Figure 3e). However, this
slightly bent sheet remains unfolded because it is too
small to be strongly bent or folded.
At low pH, O-functional groups of SLGO are fully

protonated, and the hydrophobicity of the polycyclic
aromatic network increases (Figure 3a, zones with vdW
and hydrophobic fields increase, but zones with posi-
tive and negative fields decrease). This causes SLGO
sheets to fold, stack, and precipitate out of solution.
The final layered sample is dried at room temperature
and it is possible that a hydration layer is still present
between the layers of individual sheets maintaining a
wider spacing (0.8 nm) between the graphene layers
than the gap in the intrasheet-folded structure
(0.3�0.4 nm). Multilayered aggregates of a complex
geometry can contribute to the XRD peak at 2θ ≈ 11�
(Supporting Information, Figure S4), for example, due
to a smaller sheet (or its part) layered between two
larger or incompletely overlapping sheets.
Herein, intersheet interactions dominate. As the pH

increases, the negative surface charge on the oxygen-
containing groups increases causing repulsion be-
tween neighboring sites. This implies that the number
of oxygen-containing groups slightly differs on
both sides of the graphene sheet, which would be

Figure 3. Scheme of the distribution of potential fields (red
= positive, blue = negative, orange = hydrophobic, yellow =
van der Waals, vdW calculated using FieldView 2.0.2)
around a small SLGO sheet with zero total charge of (a)
nonbent and (b) bent sheet andnegatively charged sheet (c)
nonbent and (d) bent; (e) ab initio HF/6-31G(d,p) calculation
of the SLGO model showing two parts with planar O-free
and nonplanar O-containing patches.
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consistent with the initial acid-oxidation of the upper-
most graphene layer while still apart of the graphite
structure. Once detached, the introduction of addi-
tional oxygen-containing acidic groups due to acid-
oxidation would proceed in other unfunctionalized
areas, but would be unlikely to occur directly on the
opposing site of an existing acid-functionalized area,
otherwise etching would occur leading to a loss in the
number of acidic groups rather than a gain.
The SLGO sheet would then bend away and fold

allowing maximum separation of deprotonated sites
(Supporting Information, Scheme S1). At the same time
the folded structure reduces the exposure of unfunc-
tionalized areas of the graphene layer to the aqueous
environment due to a hydrophobic effect. At the
edges, the separation of charged O-groups is restricted
especially in highly oxidized SLGO. The SLGO sheet
can collapse upon evaporation of the solvent,22,23

causing the formation of nonplanar complex structures
composed of many sheets. The existence of such a
structure is reflected in the low temperature nitrogen
adsorption�desorption isotherm, which has a long
hysteresis loop (Supporting Information, Figure S5a,
curve 1). As evaporation of water from basic solutions
increases the concentration of the base, it drives the
system toward high pH, the surface tension of the
aqueous solution increases above that of water24

causing greater contraction of the carbon nanomater-
ial system and providing a higher potential energy to
drive the conformational changes. Even at neutral
pH it can be seen that the charge distribution
becomes less heterogeneous as the morphology
of graphene changes from planar (Figure 3a) to a
curved structure (Figure 3b). This may, in turn, lead to
preferential arrangement of the sheets, which could
explain the observed stacking during agglomera-
tion or hierarchical ordering.25 Collapse or stacking
of the SLGO sheets also leads to a reduction in
specific surface area (SBET) and formation of voids,
or pseudopores.
The SBET value of 54 m2 g�1 obtained for SLGO

degassed at 150 �C prior to low temperature N2

adsorption measurements (Supporting Information,
Figure S5), is well below the theoretical value of 4200
or 2700 m2 g�1 for small-sheet single or two to three
layer graphene structures, respectively. This effect can
be due to collapse of the sheets into relatively large
and dense aggregates of a complex structure. The low
SBET for heated SLGO is close to that of exfoliated
graphite (20 m2 g�1) with stacks of 100�200 nm in
thickness. However, the texture of heated SLGO and
exfoliated graphite are markedly different because
pores with very complex geometry were formed
within the crumpled flexible SLGO sheets on degas-
sing, similar to the structures observed in TEM
images (e.g., Figure 1a,c). The crumpling of indivi-
dual graphene sheets needs much less energy than

the crumpling of multilayer structures of exfoliated
graphite.
Conformational changes induced in SLGO with ∼6

atom % O were calculated using molecular dynamic
(MD) simulations (Supporting Information, Figure S6).
Calculations were done for larger (20.9� 7.9 nm2) and
smaller (20.8� 3.9 nm2) graphene sheets. The geome-
try of initially hydrated folded SLGO structures was
optimized using molecular mechanics (MM) with the
same force field (Figure S6a,f). Rapid drying of SLGO at
150 �C used for degassing of samples was simulated
with the MD method for 10�30 ps (enough to obtain
significant changes in the geometry of the systems
with MD operating with the average temperature
�molecular velocity relationship). The heating caused
a smaller sheet to unfold and water molecules scatter
in a large volume (Figure S6b,c). However, drying at
lower temperatures slows the unfolding process at 0 �C
and induces flattening of the SLGO structure when
cooled to �73 �C (Figure S6d,e). A larger SLGO sheet
(Figure 2a,c) in a hydrated state (Figure S6f) remains
folded at heating to 150 �C for 20 ps (Figure S6g).
Despite removal of water upon heating, this bent
structure remains folded due to stronger attractive
hydrogen bonding of hydroxyls and other O-contain-
ing functionalities and dispersion interactions between
nonpolar fragments of larger bent structures. This
result of MD simulations is in agreement with TEM
images obtained for dried SLGO with collapsed struc-
tures. The Raman spectra (Figure S7) show that aggre-
gation and crumpling of SLGO sheets upon degas-
sing does not result in graphitization of the sample
despite the strong reduction of SBET. Thus, the pre-
sence of a significant number of O-containing func-
tionalities in SLGO controls the graphitic motifs in its
structure even after heating and collapse of its “free”
sheets.

CONCLUSIONS

SLGO in the wet state, dried from the wet state, and
in the dry state exhibits very different textural char-
acteristics that are governed by the chemical environ-
ment, in particular pH, as well as its oxygen-containing
functional groups and their surface charge. At basic pH
SLGO sheets tend to fold owing to the electrostatic
repulsion between negatively charged deprotonated
acidic groups, and SLGO suspensions are stable,
whereas at low pH SLGO suspensions are destabilized
owing to stronger intersheet interactions and higher
zeta-potential. Upon drying, SLGO sheets form dense
aggregates with complex structure and porosity, and
low BET surface area. Depending on the geometric size
of SLGO sheets and drying conditions, they can unfold
or remain folded due to hydrogen bonding between
polar surface functional groups and dispersion
interactions between nonpolar graphene fragments.
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Therein careful selection of the chemical environ-
ment and the surface functionality and reactivity of

single-layer graphene oxide sheets is required when
tailoring SLGO for specific applications.

METHODS
SLGO Folding. SLGO was purchased from CheapTubes Inc.,

washed extensively in water and methanol, and subsequently
dried from acetone under a vacuum in order to remove any
possible residual chemicals from their synthesis method. SLGO
was placed in 2 M NaOH solution and sonicated for 30 min and
left for 24 h. SLGO was subsequently separated via centrifuga-
tion and washing with pure water, but no fulvic acids (oxidative
debris) were eluted from the SLGO. The surface oxygen-contain-
ing groups were regenerated in 0.1 M HCl on stirring for 4 h and
then separated via centrifugation and washing with pure water.
SLGO (50mg)was dispersed in either hydrochloric acid (pH 1) or
sodium hydroxide (pH 12) or 10mMbuffered solutions of acetic
acid/ammonium acetate (pH 5), sodium dihydrogenphosphate/
disodium hydrogenphosphate (pH 7), or ammonium hydro-
xide/ammonium chloride (pH 9). Small drops were taken from
the resulting dispersion, dropped onto TEM grids, and allowed
to dry.

Potentiometric Titration Analysis. For purification, the precipi-
tated SLGO sample was centrifuged, the supernatant was
discarded, and the sediment was washed with Millipore water
until its dispersion. Then the dispersed SLGO was precipitated
by adding 1 M HCl with constant stirring to pH ≈ 1.0, and the
suspension was allowed to stand for some hours. The precipi-
tated sample was centrifuged, and the supernatant was dis-
carded, and the sediment was diluted with somewater, washed
until negative chloride test with AgNO3 solution was obtained,
and then freeze-dried (all evaporable components escaped).
Equilibrium titration employed a self-developed titration sys-
tem (GIMET1), 665 Dosimat (Metrohm) burets, a magnetic
stirrer, a high performance potentiometer, a pH electrode
(OP-0808P Radelkis), and an IBM PS/1 PC. A CO2-free condition
was provided by nitrogen bubbling. The measuring system was
calibrated both for pH and for Hþ/OH� ion concentration. Three
buffer solutions (Radelkis, Hungary) were used to check the
Nernstian response of the pH electrode. The experimental
activity coefficients of Hþ/OH� ions were determined from
the background electrolyte titration at each ionic strength.
The evaluation of titration data was based on the calculation
of the material balance for Hþ/OH� ions. Titration was carried
out using HCl and KOH solutions from pH ∼3 to ∼10 (8258 s),
and back from pH ∼10 to ∼3 (4196 s) with varied KCl con-
centration.

Zeta Potential. Electrophoretic mobility (Ue) of SLGO particles
(15 mg of SLGO per 30 mL of of Milli-Q water) was measured at
25 �C in a disposable zeta cell (DTS 1060) using a NanoZS
(Malvern, UK) apparatus. The pH values were adjusted by the
addition of HCl or NaOH solutions, and the salinity was changed
by the addition of NaCl (0.01 M). Zeta potential (ζ) was
calculated from the mobility using the Smoluchowski equation.
According to the Smoluchowski theory,26 there is a linear
relationship between the Ue and ζ values: Ue =Aζ, where A is
a constant for a thin electrical double layer at κa . 1 (where
a denotes the particle radius, and κ is the Debye�Huckel
parameter).

Molecular Simulations. Molecular dynamic (MD) simulations of
SLG and SLGO models (carbon sheets with ∼3300 to 7000
atoms of 81.4�165.3 nm2 in size and in a hydrated state with
∼6200�13000 atoms) weremade using the CharMM force field
(VEGA ZZ, version 2.427 with NAMD 2.7b328). The MD calcula-
tions were used to analyze the temperature effects on the
dynamic changes of hydrated SLGO sheets (details are shown
in the ESI). Quantum chemical calculations of the SLG (6146
atoms with no O atoms) and SLGO (6357 atoms with ∼6 at% of
O atoms) models were carried out using semi-empirical method
PM6 (MOPAC 2009, versions 10.341 L and 11.038 L with the
MOZYME algorithm).15 TheO-containing groups totally covered
the graphene edges and a portion of the O atoms in the form of

different groups (COH, COOH, CdO, C�O�C) was attached to
C atoms in the inner-sheet defects29 randomly distributed in the
sheets. Ab initio calculations (Gaussian 0321 with HF/6-31G(d,p)
basis set) of the geometry of relatively small models (∼220
atoms) of SLGO were performed (without consideration of the
solvation effects) to show the oxidizing effects on the bending
of the SLGO sheets. Simple but pictorial calculations of potential
fields (positive, negative, hydrophobic, van der Waals, vdW)
with the FieldView 2.0.2 program are described in detail else-
where.30 The ab initiomethodwas used to analyze the oxidizing
effects on the geometry (bending) of relatively small fragments
(∼220 atoms) of SLG and SLGO. The PM6 method was used to
study certain geometric features of relatively large SLG and
SLGO sheets. The MD method was used to study the bending/
folding/unfolding and temperature effects of hydrated SLGO
(up to 13000 atoms). The initial geometry of the SLGO and SLG
sheets was both flat and strongly bent, and then it was
optimized within all the used methods.
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